Data Centers in Orbit? Space-Based Edge Computing Gets a Boost

Aug. 17, 2022
A plan to operate small data centers in space got a boost this week, as satellite colocation company OrbitsEdge has a launch partner. OrbitsEdge is working with HPE to house a small rack of servers inside a satellite in low-earth orbit (LEO).

Plans to operate small data centers in space got a boost this week, as satellite colocation company OrbitsEdge now has a launch partner. Hybrid rocket startup Vaya Space announced a long-term, exclusive launch agreement with OrbitsEdge, a key step in commercializing the technology for both companies.

OrbitsEdge has developed a compact rack design that will house servers inside a satellite, and has partnered with Hewlett Packard Enterprise and other vendors to create a high-performance computing (HPC) data center to be launched into low-earth orbit (LEO) to process and analyze data being created in space.

It’s one of the most challenging concepts in the evolution of edge computing, which typically seeks to bring data closer to users. OrbitsEdge sees a different business model – analysis and data thinning for the enormous volume of data being generated by next-generation satellites. That includes commercial imaging satellites that are collecting enormous volumes of data.

But first, you have to get the data center into space. That’s where Vaya Space comes in. Vaya was created in 2017 by former Space Shuttle Commander Sid Gutierrez, and has developed an innovative hybrid rocket design using 3D printed fuel grains created from recycled thermoplastics. The company’ tested its launch vehicle in January with a sub-orbital flight from California, and expects its first orbital mission to be in 2023.

“Vaya has gained strong momentum over the past quarter, leapfrogging many of our earlier competitors that approached the space sector with legacy technology,” said Jack Blood, Chief Commercial Officer for Vaya Space. “This is the third major agreement we’ve announced in as many months, as satellite providers have increasingly turned to us to meet their launch needs. We look forward to supporting Orbits Edge as they deploy their new and innovative technology for above-the-cloud, in-space computing.”

The ‘Absolute Extreme of What’s Possible’

OrbitsEdge wants to use edge computing technology to reduce the bandwidth bottlenecks and transmission latency associated with sending vast amounts of satellite data back to Earth for processing. It has worked with server venders like HPE to prototype hardware that can offer a performance boost over current space-based servers, but still operate in a challenging environment.

“OrbitsEdge  is the absolute extreme of what is possible with HPE technology,” said Keenan Sugg, solutions architect for HPE. “The  fact that you can trust our systems in the ultimate lights-out  environment in space speaks volumes.”

OrbitsEdge is able to communicate with other satellites to collect and process their data, as well as perform “overhead” edge computing for terrestrial clients in places where a traditional data center is unavailable. The company sees opportunities in offloading and storing data from Earth Observation satellites, processing it into immediately usable imagery, and sending the results directly to end-users in the field.

One key to this strategy is the OrbitsEdge SatFrame, the company’s proprietary satellite bus, which features a standardized 19-inch server rack with available volume for 5U of hardware. The company’s first two SatFrame pathfinder satellites will support 18-inch deep hardware with production designs capable to grow to support full-sized 36 inch deep hardware.

Here’s a closer look at OrbitsEdge and its ambitions.

About the Author

Rich Miller

I write about the places where the Internet lives, telling the story of data centers and the people who build them. I founded Data Center Knowledge, the data center industry's leading news site. Now I'm exploring the future of cloud computing at Data Center Frontier.

Sponsored Recommendations

Guide to Environmental Sustainability Metrics for Data Centers

Unlock the power of Environmental, Social, and Governance (ESG) reporting in the data center industry with our comprehensive guide, proposing 28 key metrics across five categories...

The AI Disruption: Challenges and Guidance for Data Center Design

From large training clusters to small edge inference servers, AI is becoming a larger percentage of data center workloads. Learn more.

A better approach to boost data center capacity – Supply capacity agreements

Explore a transformative approach to data center capacity planning with insights on supply capacity agreements, addressing the impact of COVID-19, the AI race, and the evolving...

How Modernizing Aging Data Center Infrastructure Improves Sustainability

Explore the path to improved sustainability in data centers by modernizing aging infrastructure, uncovering challenges, three effective approaches, and specific examples outlined...

SeventyFour /

Improve Data Center Efficiency with Advanced Monitoring and Calculated Points

Max Hamner, Research and Development Engineer at Modius, explains how using calculated points adds up to a superior experience for the DCIM user.

White Papers

Dcf Sesr Cover 2022 05 19 10 38 01 231x300

The Software-Defined Bottom Line

May 23, 2022
Over time, data center infrastructure has become infinitely more complex and more distributed. This special report, courtesy of Schneider Electric, explores the evolution of software...